Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Dalton Trans ; 51(5): 2094-2104, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1631403

ABSTRACT

In this study, a novel porphyrin-based porous organic polymer (POP) was constructed using 5,10,15,20-tetramine (4-aminophenyl) porphyrin (TAPP) and 5,5'-diformyl-2,2'-bipyridine (DPDD) as organic ligands via a solvothermal method (represented as TAPP-DPDD-POP). Then, it was utilized as a bifunctional scaffold for constructing a sensitive sensing strategy toward the nucleocapsid phosphoprotein (N-gene) of SARS-CoV-2. The obtained TAPP-DPDD-POP is composed of nanospheres with a size of 100-300 nm and possesses a highly conjugated and π-π stacking network. The coexistence of the porphyrin and bipyridine moieties of TAPP-DPDD-POP afforded considerable electrochemical activity and a strong binding interaction toward the SARS-CoV-2 N-gene-targeted antibody and targeted the aptamer strands of the N-gene. The TAPP-DPDD-POP-based aptasensor and immunosensor were manufactured for the sensitive analysis of SARS-CoV-2 N-gene, and exhibited the limit of detection (LOD) of 0.59 fg mL-1 and 0.17 fg mL-1, respectively, within the range of 0.1 fg mL-1 to 1 ng mL-1 of N-gene. The sensing performances of both the TAPP-DPDD-POP-based aptasensor and immunosensor were better than those of existing electrochemical biosensors for analyzing the N-gene, accompanied with excellent stability, high selectivity and reproducibility. The TAPP-DPDD-POP-based aptasensor and immunosensor were then employed to detect the N-gene from various environments, including human serum, river water, and seafoods. This work provides a new method of using an electrochemically active POP to sensitively and selectively analyze SARS-CoV-2 in diverse environments.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Electrochemical Techniques/methods , Polymers/chemistry , Porphyrins/chemistry , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans , Limit of Detection , Phosphoproteins/analysis , Reproducibility of Results
2.
Biomolecules ; 11(11)2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523862

ABSTRACT

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Subject(s)
COVID-19/diagnosis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , COVID-19 Testing , CRISPR-Cas Systems , DNA, Single-Stranded , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Bonding , Limit of Detection , Nanocomposites , Nanostructures , Nitrogen/chemistry , PC12 Cells , Porosity , RNA, Guide, Kinetoplastida , RNA, Viral/metabolism , Rats , SARS-CoV-2 , Sensitivity and Specificity , Surface Properties
3.
ACS Appl Mater Interfaces ; 13(42): 49754-49761, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1475248

ABSTRACT

A reliable and sensitive detection approach for SARS-CoV 2 is essential for timely infection diagnosis and transmission prevention. Here, a two-dimensional (2D) metal-organic framework (MOF)-based photoelectrochemical (PEC) aptasensor with high sensitivity and stability for SARS-CoV 2 spike glycoprotein (S protein) detection was developed. The PEC aptasensor was constructed by a plasmon-enhanced photoactive material (namely, Au NPs/Yb-TCPP) with a specific DNA aptamer against S protein. The Au NPs/Yb-TCPP fabricated by in situ growth of Au NPs on the surface of 2D Yb-TCPP nanosheets showed a high electron-hole (e-h) separation efficiency due to the enhancement effect of plasmon, resulting in excellent photoelectric performance. The modified DNA aptamer on the surface of Au NPs/Yb-TCPP can bind with S protein with high selectivity, thus decreasing the photocurrent of the system due to the high steric hindrance and low conductivity of the S protein. The established PEC aptasensor demonstrated a highly sensitive detection for S protein with a linear response range of 0.5-8 µg/mL with a detection limit of 72 ng/mL. This work presented a promising way for the detection of SARS-CoV 2, which may conduce to the impetus of clinic diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Base Sequence , Biosensing Techniques/instrumentation , COVID-19/diagnosis , DNA/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Gold/radiation effects , Humans , Immobilized Nucleic Acids/chemistry , Light , Limit of Detection , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Pharynx/virology , Photochemical Processes , Porphyrins/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Ytterbium/chemistry
4.
Sci Rep ; 11(1): 19481, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447330

ABSTRACT

The pandemic infectious disease (Covid-19) caused by the coronavirus (SARS-CoV2) is spreading rapidly around the world. Covid-19 does an irreparable harm to the health and life of people. It also has a negative financial impact on the economies of most countries of the world. In this regard, the issue of creating drugs aimed at combating this disease is especially acute. In this work, molecular docking was used to study the docking of 23 compounds with QRF3a SARS-CoV2. The performed in silico modeling made it possible to identify leading compounds capable of exerting a potential inhibitory and virucidal effect. The leading compounds include chlorin (a drug used in PDT), iron(III)protoporphyrin (endogenous porphyrin), and tetraanthraquinone porphyrazine (an exogenous substance). Having taken into consideration the localization of ligands in the QRF3a SARS-CoV2, we have made an assumption about their influence on the pathogenesis of Covid-19. The interaction of chlorin, iron(III)protoporphyrin and protoporphyrin with the viral protein ORF3a were studied by fluorescence and UV-Vis spectroscopy. The obtained experimental results confirm the data of molecular docking. The results showed that a viral protein binds to endogenous porphyrins and chlorins, moreover, chlorin is a competitive ligand for endogenous porphyrins. Chlorin should be considered as a promising drug for repurposing.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/metabolism , Heterocyclic Compounds/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/metabolism , Viroporin Proteins/chemistry , Viroporin Proteins/metabolism , Binding Sites , Drug Repositioning , Heterocyclic Compounds/metabolism , Ligands , Molecular Docking Simulation , Porphyrins/chemistry , Porphyrins/metabolism , Protoporphyrins/chemistry , Protoporphyrins/metabolism , SARS-CoV-2/drug effects , Viroporin Proteins/antagonists & inhibitors , COVID-19 Drug Treatment
5.
Bioconjug Chem ; 32(6): 1067-1077, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-1241779

ABSTRACT

Passing through the blood-brain barrier (BBB) to treat neurological conditions is one of the main hurdles in modern medicine. Many drugs with promising in vitro profiles become ineffective in vivo due to BBB restrictive permeability. In particular, this includes drugs such as antiviral porphyrins, with the ability to fight brain-resident viruses causing diseases such as HIV-associated neurocognitive disorders (HAND). In the last two decades, BBB shuttles, particularly peptide-based ones, have shown promise in carrying various payloads across the BBB. Thus, peptide-drug conjugates (PDCs) formed by covalent attachment of a BBB peptide shuttle and an antiviral drug may become key therapeutic tools in treating neurological disorders of viral origin. In this study, we have used various approaches (guanidinium, phosphonium, and carbodiimide-based couplings) for on-resin synthesis of new peptide-porphyrin conjugates (PPCs) with BBB-crossing and potential antiviral activity. After careful fine-tuning of the synthetic chemistry, DIC/oxyma has emerged as a preferred method, by which 14 different PPCs have been made and satisfactorily characterized. The PPCs are prepared by coupling a porphyrin carboxyl group to an amino group (either N-terminal or a Lys side chain) of the peptide shuttle and show effective in vitro BBB translocation ability, low cytotoxicity toward mouse brain endothelial cells, and low hemolytic activity. Three of the PPCs, MP-P5, P4-MP, and P4-L-MP, effectively inhibiting HIV infectivity in vitro, stand out as most promising. Their efficacy against other brain-targeting viruses (Dengue, Zika, and SARS-CoV-2) is currently under evaluation, with preliminary results confirming that PPCs are a promising strategy to treat viral brain infections.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Blood-Brain Barrier/metabolism , Peptides/pharmacokinetics , Porphyrins/pharmacokinetics , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Biological Transport , Cell Line , Drug Discovery , HEK293 Cells , HIV/drug effects , HIV Infections/drug therapy , Humans , Mice , Peptides/chemistry , Peptides/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology
6.
Molecules ; 25(19)2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-803884

ABSTRACT

The problem of treating viral infections is extremely relevant due to both the emergence of new viral diseases and to the low effectiveness of existing approaches to the treatment of known viral infections. This review focuses on the application of porphyrin, chlorin, and phthalocyanine series for combating viral infections by chemical and photochemical inactivation methods. The purpose of this review paper is to summarize the main approaches developed to date in the chemical and photodynamic inactivation of human and animal viruses using porphyrins and their analogues and to analyze and discuss the information on viral targets and antiviral activity of porphyrins, chlorins, of their conjugates with organic/inorganic compounds obtained in the last 10-15 years in order to identify the most promising areas.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Photochemotherapy/methods , Pneumonia, Viral/drug therapy , Porphyrins/pharmacology , Antiviral Agents/chemistry , COVID-19 , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Pandemics , Photochemical Processes , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/chemistry , SARS-CoV-2 , Virus Attachment/drug effects
7.
ACS Appl Mater Interfaces ; 13(1): 155-163, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-997777

ABSTRACT

A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.


Subject(s)
COVID-19/virology , Photosensitizing Agents/pharmacology , Polymers/pharmacology , COVID-19/prevention & control , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Iatrogenic Disease/prevention & control , Light , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microfibrils/chemistry , Pandemics , Photosensitizing Agents/chemistry , Polymers/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Singlet Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL